

Developing a Discovery and Game-Based Learning Module on The Benefits of Friction Topic in Elementary School

Sisca Wulandari^{1*}, Diana Vivanti Sigit², Irwanto³

1,2,3 State University of Jakarta, Indonesia

Corresponding Author: sisca.wulandari@mhs.unj.ac.id

Abstract: This research was conducted to develop a valid, practical, and effective teaching module for the topic of friction benefits by integrating *Discovery Learning* and *Game-Based Learning* approaches. The ADDIE development model comprising Analysis, Design, Development, Implementation, and Evaluation was used as the research framework. In the analysis phase, curriculum and student needs were examined. The design phase involved the creation of module structure, learning worksheets (LKPD), and assessment instruments. The module was validated by content, language, and instructional media experts, with validation results exceeding 92%, categorized as very valid. A limited trial was conducted with fourth-grade students to evaluate practicality and effectiveness. Results showed that students found the module easy to understand and engaging, particularly through game-based learning activities. The effectiveness of the module was confirmed through pretest and posttest scores, which increased from 40.67 to 83.33, resulting in an N-Gain score of 0.72 (high category). These findings indicate that the module significantly improved student learning outcomes. It can be concluded that the developed teaching module is suitable for use in elementary IPAS classes and has the potential to enhance student engagement and conceptual understanding through interactive and discovery-based strategies.

Keywords: Module, Discovery Learning, Game Based Learning, Friction, Elementary School

INTRODUCTION

Basic education has been regarded as playing a strategic role in shaping students' critical and creative thinking abilities, as well as in building early understanding of scientific concepts. Within the context of the *Ilmu Pengetahuan Alam dan Sosial* (IPAS) subject, the topic of friction benefits is directly related to everyday phenomena and thus requires a concrete instructional approach. Unfortunately, teaching methods at the primary school level have still been dominated by traditional, teacher-centered practices, resulting in low levels of student engagement and suboptimal learning outcomes (Ulum, Mu'arifin, & Heynoek, 2021).

To address this issue, learning models that promote active student involvement have been deemed essential. The *Discovery Learning* model has been recognized for enabling

students to construct their understanding through exploratory and independent discovery activities. This model has been proven effective in improving both concept mastery and learning autonomy among elementary school students (Ulum et al., 2021).

Meanwhile, the *Game-Based Learning* (GBL) approach has offered an engaging and interactive learning experience. The use of educational games such as card games and board games has been shown to increase students' motivation, focus, and participation, creating a more dynamic classroom atmosphere (Kumar, Chang, & Al Haqh, 2024). In the Indonesian educational context, the use of educational games such as "Snakes and Ladders" has also been proven to enhance mathematics learning outcomes and student engagement (Azizah & Findrayani, 2025).

By integrating both approaches into a teaching module, IPAS learning on the topic of friction benefits is expected to become more contextual, enjoyable, and effective in enhancing students' academic achievement. Therefore, this study was undertaken to develop a teaching module that combines *Discovery Learning* and *Game-Based Learning*, ensuring that the final product is valid, practical, and effective for use in Grade IV elementary classrooms (Lasut & Bawengan, 2023; Wulandari et al., 2023).

Based on the aforementioned background, the present study was aimed at developing an IPAS teaching module on the topic of friction benefits by incorporating *Discovery Learning* and *Game-Based Learning* approaches that meet the criteria of validity, practicality, and effectiveness in improving the learning outcomes of fourth-grade elementary students.

METHOD

This study was conducted as a research and development project aimed at producing a teaching module that integrates the *Discovery Learning* and *Game-Based Learning* approaches. The development process was guided by the ADDIE model, which comprises five main stages: *Analysis, Design, Development, Implementation,* and *Evaluation*. The ADDIE model has been widely adopted in the development of teaching modules, e-modules, and textbooks for primary education due to its structured, simple, and comprehensive nature, covering all stages from initial design to implementation and

final evaluation (Wulandari et al., 2023). As defined by Branch (2009), the ADDIE model provides a systematic framework involving five major phases.

Research Procedure

During the Analysis stage, learning needs were identified through curriculum analysis, student characteristics assessment, and a review of the friction topic within the IPAS subject. Data were collected using documentation, interviews with teachers, and classroom observations to gain a clear understanding of existing instructional practices and learner needs.

In the Design phase, the module structure was planned based on the syntax of *Discovery Learning* and educational games. Supporting components such as student worksheets (LKPD), assessment instruments, and instructional games were also designed during this stage to ensure alignment with learning objectives.

The Development stage involved constructing the module in accordance with the design blueprint. The initial draft of the module was then validated by subject matter experts, language experts, and instructional media specialists. Revisions were made based on the feedback received from these experts. Following this, a small-scale trial was conducted through individual evaluations to test the usability and clarity of the module.

During the Implementation stage, the module was applied in an actual classroom setting involving fourth-grade students. The teacher implemented the module in teaching sessions, and its effectiveness was measured by administering pretest and posttest assessments.

The final stage, Evaluation, consisted of analyzing the module's effectiveness and practicality, as well as gathering feedback from both teachers and students. This stage was aimed at identifying areas for improvement and ensuring that the module met the intended educational goals.

Data Analysis Technique

By systematically following the ADDIE development stages, the resulting teaching module is expected to possess high quality and be effectively applicable in IPAS learning at the elementary school level. The structured nature of this model ensures that each stage contributes meaningfully to the creation of an educational product that is valid, practical, and impactful.

During the analysis phase, a comprehensive needs assessment was conducted to understand the cognitive characteristics of children aged 7–11 years, as well as the specific challenges related to disaster education in Indonesian primary schools. This phase involved a literature review of national curriculum frameworks, disaster education policies, and studies on children's learning behaviors in high-risk areas.

In the design phase, the structure and layout of the application were carefully planned to align with the identified user needs. The design included a modular content structure covering disaster types, mitigation steps, evacuation procedures, and emergency preparation. Storyboards and wireframes were developed to outline the content flow and interaction pathways. Animated characters, icons, and color schemes were chosen to foster a positive and non-threatening learning environment.

The development phase focused on constructing the functional prototype of *MitiPedia*. Core features included: (1) animated explanations of common disasters such as earthquakes, floods, and volcanic eruptions; (2) gamified quizzes and mini-games to reinforce learning; (3) an interactive evacuation simulation to train appropriate response behavior; and (4) a "Disaster Preparedness Kit" module to introduce essential emergency supplies through engaging drag-and-drop activities. The prototype was developed to operate offline to ensure accessibility in low-connectivity regions.

The implementation phase was carried out through a small group trial, involving ten students from grades 3 to 5 in a public primary school. This pilot testing aimed to assess three main aspects: usability, content clarity, and learner engagement. Direct observation, guided play sessions, and semi-structured interviews were employed to gather both qualitative and quantitative feedback.

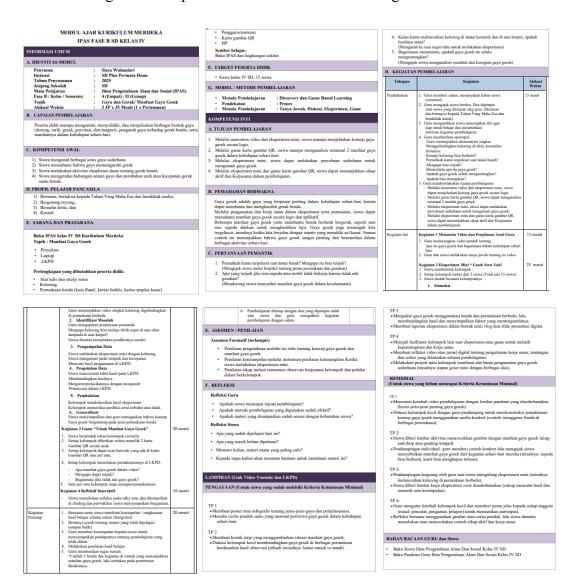
In the evaluation phase, data from the small group trial were analyzed alongside expert reviews from an educational technologist, a primary teacher, and a child psychologist. Based on this evaluation, minor revisions were made to improve language simplicity, icon placement, and quiz instructions.

RESULT AND DISCUSSION

RESULT

This study was conducted to develop a teaching module for the IPAS subject focusing on the benefits of friction, employing *Discovery Learning* and *Game-Based Learning* approaches. The development process was carried out using the ADDIE model, which includes the phases of *Analysis, Design, Development, Implementation*, and *Evaluation*. During the analysis phase, a thorough review was undertaken concerning the curriculum, student characteristics, and learning needs in Grade IV of primary school. Observations revealed that classroom instruction was still predominantly conventional, with minimal active student engagement. The concept of friction was perceived as abstract by students, indicating the need for a more contextual and engaging approach.

In the design phase, the module structure was formulated based on the syntax of Discovery Learning and Game-Based Learning, accompanied by student worksheets (LKPD), assessment tools, and evaluation instruments. During the development stage, the module was validated by four experts: a content expert, a language expert, and two instructional material experts (module and worksheet specialists). The content and language validations were carried out by lecturers from Universitas Negeri Jakarta, while the module and worksheet validation was conducted by Grade IV teachers from SD Plus Permata Ihsan. The validation results indicated a high level of validity, with scores of 92.50% from the content expert, 93.33% from the language expert, and 92.86% from the instructional materials experts each falling into the "very valid" category.


A limited trial was subsequently conducted through a one-to-one evaluation involving three Grade IV students at SD Plus Permata Ihsan. The trial results suggested that the module was considered practical and easy to use. All participating students indicated that the module was easy to understand due to its clear language and logically sequenced activity instructions. Regarding the worksheets, students found them helpful in guiding experimental procedures on friction and in encouraging active and independent thinking. Additionally, the use of a picture card game as part of the learning process was reported to make the experience more enjoyable and less monotonous. Two out of the three students expressed interest in using similar modules in other subjects, as they felt more motivated to learn. These findings demonstrate that the module, worksheets, and supporting media fulfilled the practicality criteria from the learners' perspective.

During the implementation phase, the module was utilized by the teacher as a guide for instruction, while students engaged in explorative and enjoyable learning activities. Classroom observations indicated a higher level of student engagement and a more dynamic learning environment compared to previous lessons. To assess the effectiveness of the module, a *pre-experimental design* was employed using a one-group pretest-posttest model. Students were given a pretest before, and a posttest after, the learning intervention with the module.

The results showed an increase in the average score from 40.67 in the pretest to 83.33 in the posttest. This reflected a mean gain of 42.66 points, indicating a significant improvement in students' understanding of the friction topic. The N-Gain Score was calculated at 0.72 (or 71.9%), which falls into the "high" category according to Hake's (1998) classification. This outcome suggests that the module was highly effective in enhancing student learning outcomes in the targeted subject matter.

Based on the findings from the validation, practicality testing, and effectiveness analysis, it can be concluded that the *Discovery Learning* and *Game-Based Learning*-based teaching module developed in this study successfully met all three core criteria: it was valid in terms of content, language, and design; it was practical for classroom use; and it was effective in improving student learning outcomes on the topic of friction.

The following is a description of the results of the teaching module and final LKPD:

1-9 Teaching Module and Student Worksheet Benefits of Friction

DISCUSSION

The findings of this study indicated that the development of a teaching module based on *Discovery Learning* and *Game-Based Learning* for the topic of friction benefits significantly improved the learning outcomes of fourth-grade elementary students. This improvement was reflected in the increased student scores during the field trials, as well as the positive responses received from both teachers and students regarding the learning process. The observed improvement demonstrated the effectiveness of a student-centered and exploratory learning strategy in facilitating students' understanding of abstract concepts within IPAS. These results were aligned with the findings of Putra, Wiyanto, and Linuwih (2020), in which *Discovery Learning* was found to significantly enhance students' critical thinking skills and mastery of scientific concepts.

Through the implementation of *Discovery Learning* in the module, students were enabled to engage in a constructive learning experience involving observation, exploration, and conclusion-making activities. According to Kurniawati (2022), students' active involvement in constructing their own knowledge positively affects both cognition and learning motivation. This was reflected in the present study, where students were observed to display high levels of interest and enthusiasm throughout the learning process. Additionally, the findings of Arofah and Wulandari (2023) emphasized that elementary students frequently struggle with understanding instructional directions, become easily bored, and fail to grasp material when it is not delivered in an engaging and exploratory manner. These findings further support the necessity of adopting *Discovery Learning* as a means of fostering more meaningful learning experiences.

In terms of *Game-Based Learning*, the integration of game elements into the module was found to significantly enhance student engagement and motivation. It was emphasized by Kumar, Chang, and Al Haqh (2024) that an interactive and enjoyable learning environment encourages students to remain focused and enthusiastic. In this context, educational games also served as effective formative assessment tools. Sugara et al. (2023) concluded that digital educational games play a significant role in

improving students' classroom participation and concentration. These results were consistent with the experience in this study, where students were reported to be more motivated when the learning sessions included digital games relevant to the topic of friction benefits.

The effectiveness of interactive media in supporting science learning was further confirmed by Setiani et al. (2023), who demonstrated that the use of digital learning tools, such as laptops, facilitated better understanding of the material. These findings suggest that both digital and conventional media, when designed to be engaging and contextually relevant, can contribute meaningfully to student learning improvement. The demand for attractive instructional media was also highlighted in a case study by Azizah, Wakinah, and Wulandari (2023), which revealed that first-grade students at SDN Pasir Gadung had difficulty concentrating and were easily distracted. It was shown that unengaging instructional designs could result in low student responsiveness and participation.

Methodologically, the integration of *Discovery Learning* and *Game-Based Learning* was found to promote a dialogic, participatory, and reflective learning process. Teachers were positioned as facilitators, while students actively constructed their knowledge through enjoyable and exploratory activities. Lasut and Bawengan (2023) stated that the combination of exploratory strategies and game-based elements not only enhanced concept retention but also helped to build student confidence. In a study by Sumirah et al. (2023), it was shown that students with lower achievement and less responsibility in learning required more flexible and creative approaches to learning. The module presented in this study served as a concrete example of how active and engaging strategies could address such educational challenges.

The significance of innovation in instructional design was also highlighted by Wulandari (2015), who emphasized that contextual learning, particularly when closely linked to students' real-life experiences, tends to be more effective. In a more recent study, Wulandari et al. (2025) advocated for the use of Project-Based Learning-based flipbook media to support the *Merdeka Curriculum* and reinforce student character development. The core principles of such a model—namely active student involvement

and the strengthening of local context were well reflected in the module developed in this study, which promoted thematic and experiential learning.

This research also supported the findings of Nurhillal et al. (2023), who compared two cooperative learning models at the secondary level and demonstrated that instructional approaches positioning students as active subjects led to better learning outcomes. While their study was conducted at a different educational level, the participatory principles applied showed similar success in enhancing students' conceptual understanding and social skills, as observed during the implementation of the friction module.

Considering the results from the pretest and posttest, classroom observations, and teacher and student feedback, it can be concluded that the module was successful not only in quantitative terms but also qualitatively contributed to transforming students' learning behaviors. These findings were reinforced by Pacheco (2024), who stated that interactive media can serve as effective tools in bridging students' understanding of complex scientific concepts. Therefore, the *Discovery Learning* and *Game-Based Learning*-based module can be deemed highly appropriate for IPAS learning in elementary schools and holds substantial potential for replication across various subjects and educational levels.

In accordance with the recommendation by Gomez et al. (2022), it is suggested that this module be tested further on a larger scale to confirm its effectiveness at the national level. This step is crucial in reinforcing educational innovation under the *Merdeka Curriculum* and achieving a learning environment that is active, enjoyable, and aligned with 21st-century competencies.

Figure 10 Research at SD Plus Permata Ihsan

CONCLUSION

Based on the results of the conducted research and development, the teaching module that incorporates *Discovery Learning* and *Game-Based Learning* for the topic of friction benefits has been' proven to be appropriate for use in Grade IV elementary school instruction. The module underwent a comprehensive validation process by subject matter experts, language specialists, and instructional material evaluators, including worksheets (LKPD), with evaluation scores exceeding 92%. These results indicated that the module was classified as highly valid. The high level of validity reflects that the module's content, language, and structure were aligned with the learning objectives of IPAS and the developmental characteristics of elementary students.

In terms of practicality, an individual trial was carried out, through which it was observed that students were able to understand the module content effectively. The activities embedded within the worksheets and the designed educational games successfully encouraged active participation during the learning process. Student responses indicated that the activities were enjoyable, easy to follow, and contributed to increased motivation for learning. These findings suggest that the module was not only practical for teachers to implement in the classroom, but also capable of positively stimulating student engagement and enthusiasm for learning.

The module's effectiveness was also demonstrated through the comparison of pretest and posttest results, which revealed a significant improvement in students' learning outcomes. The average pretest score of 40.67 increased to 83.33 in the posttest, resulting in an N-Gain score of 0.72, which is categorized as high. This indicated that the actual use of the module had a substantial impact on students' conceptual understanding of friction benefits and contributed to a more meaningful and contextual learning experience.

Therefore, it can be concluded that the developed teaching module is valid, practical, and effective for implementation in IPAS learning at the elementary school level. The integration of *Discovery Learning* and *Game-Based Learning* was found to significantly enhance the overall quality of instruction.

For future development, it is recommended that similar modules be applied to other topics and grade levels, as well as tested on a broader scale to maximize their benefits and further support the transformation toward active learning under the *Merdeka Curriculum* framework.

REFERENCE

- Arofah, S. N., & Wulandari, S. (2023). CASE STUDY AT SD Al-Azhar Syifa Budi Tangerang: DIFFICULT TO UNDERSTAND THE MATERIAL, THE DIRECTION, AND GET BORED QUICKLY PROBLEM OF CLASS 5 STUDENT. 1(2), 72–80.
- Azizah, S. N., & Wulandari, S. (2023). CASE STUDY AT SDN PASIR GADUNG 01 TANGERANG: LOW RESPONSE, DIFFICULT CONCENTRATE, AND DISTURB FRIENDS PROBLEM OF CLASS 1 STUDENT. 1(2), 90–98.
- Azizah, F. K., & Findrayani. (2025). The Influence of the Use of Educational Game Learning Media "Snake and Ladder" on Mathematics Learning Outcomes of Elementary School Students. At-Taqaddum, 16(2), 93–107. https://journal.walisongo.ac.id/index.php/attaqaddum/article/view/21896
- Gomez, R., Martínez, P., & Latorre, R. (2022). *Game-Based Learning: Evaluation and Research Trends in Primary Education*. Journal of Educational Technology Development and Exchange, 15(2), 40–52.
- Hake, R. (1998). Interactive-engagement versus traditional methods: A six-thousand-student survey of mechanics test data for introductory physics courses. American Journal of Physics, 66(1), 64–74. https://doi.org/10.1119/1.18809
- Kumar, M., Chang, X. W., & Al Haqh, A. F. (2024). *Implementation of Game-Based Learning in Improving Learning Motivation of Elementary School Students*. International Journal of Educational Insights and Innovations, 1(1), 19–23. https://ijedins.technolabs.co.id/index.php/ijedins/article/view/5
- Kurniawati, N. (2022). Penerapan Model Discovery Learning untuk Meningkatkan Hasil dan Motivasi Belajar IPA. Indonesian Journal of Social Science, 1(3), 27–33.
- Lasut, F., & Bawengan, B. (2023). Game-Based Learning Experiences in Primary Mathematics Education: A Systematic Review. ResearchGate. https://www.researchgate.net/publication/378803055
- Nurhillal, Z., Kemal, F., Gustianti, A., & Wulandari, S. (2023). COMPARISON OF LEARNING OUTCOMES IN WRITING OBSERVATION REPORTS USING THE GROUP INVESTIGATION METHOD VERSUS THE STUDENT TEAMS ACHIEVEMENT DIVISION METHOD FOR GRADE X STUDENTS AT SMK BRAHMA HARDIKA INDONESIA. 1(2), 639–650.

- Pacheco, J. (2024). Enhancing Conceptual Understanding in Physics through Game-Based Digital Media: A Study on Friction and Motion. arXiv preprint. https://arxiv.org/abs/2407.10057
- Putra, A. W., Wiyanto, & Linuwih, S. (2020). The Effectiveness of Discovery Learning-Based Digital Modules to Improve Students' Critical Thinking Skills in Elementary School Science Learning. Journal of Primary Education, 9(2), 134–140.
- Setiani, N., Wulandari, S., Uyun, L. F., Intansari, I., & Azizah, S. N. (2023). The Effectiveness of Using Laptop Learning Media to Improve Learning Outcomes of Class IV Science Subjects SD Islam Banowati in Semarang. *The 5th International Conference on Technology, Education and Sciences The*, 29.
- Sugara, U., Wulandari, S., Intansari, I., Setiani, N., & Dirgantara, M. R. D. (2023). Is Technological Progress an Opportunity or an Obstacle in Growing Children' S Literacy? *1st International Conference on Child Education 2023*, *1*(2), 2–17.
- Sumirah, S., Anggraeni, D. N., & Wulandari, S. (2023). CASE STUDY AT NATURE SCHOOL MEKAR BAKTI TANGERANG: LOW GRADE, HARD TO UNDERSTAND, AND LACK OF RESPONSIBILITY PROBLEM OF CLASS 1. 1(2), 81–89.
- Ulum, M., Mu'arifin, & Heynoek. (2021). *Development of Discovery Learning-Based Teaching Materials for Elementary Students*. Proceedings of the International Conference on Social Science and Humanities (ICSSH 2020). Atlantis Press. https://www.atlantis-press.com/proceedings/icssh-20/125958452
- Wulandari, S. (2015). *PENGEMBANGAN MODUL PENGAYAAN TEMA SELALU BERHEMAT ENERGI BAGI SISWA KELAS IV SEKOLAH DASAR* [Universitas Negeri Malang]. http://mulok.library.um.ac.id/index3.php/69722.html
- Wulandari, S., Intansari, I., Uyun, L. F., Setiani, N., Safitri, E., & Gbadeyanka, T. A. (2023). Developing a Flipbook by Utilizing Project-Based Learning (PjBL) to Facilitate Independent Curriculum in Primary Schools. *Tamansiswa International Journal in Education and Science*, 5(1), 71–86.
- Wulandari, S., Istiyono, Y. P., Anjuli, A. P., & Nursabila, A. A. (2025). Development of an Energy-Efficient Flipbook Based on Project- Based Learning (PjBL) to Strengthen the Profile of Pancasila Students and Preserve Local Wisdom in Elementary Schools. 9(1), 77–86.